Adversarial Defense
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Recap: week 4

1. Adversarial Example Detection

Secondary Classification Methods (— 2% 43 253%)
Principle Component Analysis ({733 #7/%, PCA)
Distribution Detection Methods (4% #& %)
Prediction Inconsistency (UM A—ZL 1)

Reconstruction Inconsistency (& ZA~—Z 1)

O O O O O 0O

Trapping Based Detection (153548 M3%)




Adversarial Attack Competition

RESULTS
N T S S -

abcdhhhh 8 10/10/23 0.7042 (3) 0.9901 (1) 0.4183 (5) View
1 alexz 2 10/10/23 0.7004 (4) 0.9901 (1) 0.4108 (6) View
1 siyuandu 2 10/09/23 0.7004 (4) 0.9901 (1) 0.4108 (6) View
1 xieyong 3 10/06/23 0.7004 (4) 0.9901 (1) 0.4108 (6) View
1 Yiy 1 10/02/23 0.7004 (4) 0.9901 (1) 0.4108 (6) View
1 jxzhou 7 10/09/23 0.5607 (8) 0.9901 (1) 0.1314 (8) View
2 wnllixiao 4 10/11/23 0.7077 (1) 0.9802 (2) 0.4353 (4) View
2 tdihl 10 10/09/23 0.7077 (1) 0.9802 (2) 0.4353 (4) View
2 starch 4 10/08/23 0.7077 (1) 0.9802 (2) 0.4353 (4) View
2 archen 7 10/09/23 0.6516 (6) 0.9802 (2) 0.3231 (7) View
3 shuyang_jiang 5 10/09/23 0.7069 (2) 0.9703 (3) 0.4436 (3) View
4 LiGuanyu 2 10/11/23 0.6779 (5) 0.9010 (4) 0.4548 (2) View
4 hanxunh 1 10/01/23 0.6779 (5) 0.9010 (4) 0.4548 (2) View
5 XRW 11 10/08/23 0.6252 (7) 0.7540 (5) 0.4964 (1) View

Link: https://codalab.lisn.upsaclay.fr/competitions/15669?secret key=77cb8986-d5bd-4009-82f0-7dde2e819ff8



https://codalab.lisn.upsaclay.fr/competitions/15669?secret_key=77cb8986-d5bd-4009-82f0-7dde2e819ff8

Adversarial Defense vs Detection

O The weird relationship between defense and detection

v
v

v
v

Detection IS defense

But... when we say defense, we (most of the time) mean the
model is secured, yet detection cannot do that...

In survey papers: detection is defense

In technical papers: defense is defense not detection

0 Differences

Defense is to secure the model or the system

Detection is to identify potential threats, which should be
followed by a defense strategy, e.g., query rejection (but
mostly ignored)

By defense, it mostly means robust training methods

v
v




Defense Methods

0 Early Defense Methods
O Early Adversarial Training Methods

0 Later Adversarial Training Methods

0 Remaining Challenges and Recent Progress




A Recap of the Timeline

20185473
20144 I&E%?E%ﬁ 2020%F 2922&5#35!%
Goodfellow | | 20165124 FEFHE. PGD AutoAttack RERAOIEER
FARLRE | | 397011580 Tk S I W, Fastyd WSS |
SWE min-maxff; ORBRA IS AAH IR uill4s BNt
FGSMAX3H (Y HERE W
iz l i
-? S ? 5 ? 3 ? e ? O—>
20134 20155 e 20174 AR 20194 29;%]1&1157&
BiggioZEA A Egga‘}nfﬂi TRQDES& gi)%‘agf&?ﬂ
5Szegedy (PCA) 0 275 k\;-azﬂ{ﬂ%ia‘ Rl ii_'kl,
EANRIXS A E7RY] | a) WETE TllETgiA. 1J|I_§E iz
FUREA - (BIM., N S
C&W) . ScienceX E
10FSiN T
pr AT




Principles of Defense

7 S
O Block the attack (3G3LEE) R

» Mask the input gradients
» Regularize the input gradients
» Distill the logits
» Denoise the input
O Robustify the model (¥&5& H[g]) A
» Smooth the decision boundary 8o R, im‘m}ﬁ
» Reduce the Lipschitzness of the o kot
model B TR EGH TR S E

» Smooth the loss landscape




Adversarial Attack

Eﬂi}“ﬁ: mein z L(fo (xi)' Vi) +.007 x

(xi, ¥i) € Dtrqin

T+

T sign(VzJ(0,,y)) esign(VoJ (6, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

SHRIGE:

;’tﬁJLBE: ”x, _ x”p:l,z or ©0 ; e-g-: ||”OO S i

255

Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. ICLR 2014.

Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.



Performance Metrics

* Measurement of clean performance:

correctly classified clean samples

accuracy (clean accuracy) =

total clean samples

e Measurement of adversarial robustness:

correctly classified advs samples

robustness (robust accuracy) =

total advs samples

* Other metrics: maximum perturbation for 100% attack success rate




Defense Methods

0 Early Defense Methods




Defensive Distillation

M components

N components

D.01

D.93

D.02
).01
] Hidden Layers | ast Hidden Softmax
Input Vector Layer Layer
X Z(X) F(X)

O Neuron

Weighted Link (weight is a parameter @ of F)

Making large logits change to be "small”
— Scaling up logits by a few magnitudes;
— Retrain the last layer with scaled logits;

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016




Defensive Distillation

ezi(x)

M components N components L —
fol) = 5o i

Distillation with
temperature T

| . ) e Zj (x)/T
L Hidden Layers | ast Hidden Softmax f L (x) —
Input Vector Layer Layer v} K e zZj (x)/T
X YA (X ) F(X ) J=1

Weighted Link (weight is a parameter @z of F)

O Neuron

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016




Defensive Distillation
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Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016




Defensive Distillation

—~Adversarial Samples Success Rate (MNIST) --—Adversarial Samples Baseline Rate (MNIST)
Adversarial Samples Success Rate (CIFAR10) - - Adversarial Samples Baseline Rate (CIFAR10)
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Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016




Defensive Distillation

Distillation makes input gradients I, L(fg(x), y) to be small!
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Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016 @9
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Defensive Distillation Is Not Robust

It can be evaded by attacking the distilled network with the temperature T.

100

x'=x+¢-signV, L(fo(x),y)
fo(x) = softmax(z(x)/T)

60
|

Success probability
40

20

T T T T T

T
0 20 40 60 80 100

Number of pixels changed

Carlini, Nicholas, and David Wagner. "Defensive distillation is not robust to adversarial examples." arXiv preprint arXiv:1607.04311 (2016).



|l essons Learned

[0 Distillation is not a good solution for adversarial robustness
O Vanishing input gradients can still be recovered by a reverse operation

0 A defense should be evaluated against the adaptive attack to prove real
robustness

Carlini, Nicholas, and David Wagner. "Defensive distillation is not robust to adversarial examples." arXiv preprint arXiv:1607.04311 (2016).




Input Gradients Regularization

Directly regularize the input gradients V,, L(fg(x), y) to be small

Lyeg = L(fo(x),y) + AV, L(fg(X),y)”%
\ 0 ] | q J

Classification loss Input gradients regularization

Related to the double backpropagation proposed by Drucker and Le Cun (1992):

argemin H(y,9) + MN|V.H(y,9)|]5

Ross et al. "Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients." AAAI, '/‘=::

Drucker, Harris, and Yann Le Cun. “Improving generalization performance using double backpropagation.” TNN, 1992.



Input Gradients Regularization

V.log f(X) for CNNs on MNIST

V.log f(X) for CNNs on SVHN

POERHIESN:R

IENHERY

Grad Reg () SradReg (1),

e ERAT e : b LY
9 4-‘ i 5
’ ¥ e -
r
.

Issues: 1) limited adversarial robustness, 2) hurts learning

\\Nl Vé‘

Ross et al. "Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients." AAAI, é(‘é
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Feature Squeezing

Compress the input space

‘-

| [--

T, ey, gy, gy, ey, v, R

.'
8 7 6 5 4 3 2 1

It also hurts performance on large-scale image datasets.

Xu et al. "Feature squeezing: Detecting adversarial examples in deep neural networks." NDSS, 2018.



Thermometer Encoding

Discretize the input to break small noise

Real-valued Quantized Discretized (one-hot) Discretized (thermometer)

0.13 0.15 [0100000000] [0111111111]
0.66 0.65 [0000001000] [0000001111]
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Proposed Thermometer Encoding

(a) One hot encoding (b) Thermometer encoding

Buckman et al. "Thermometer encoding: One hot way to resist adversarial examples." ICLR, 2018.




Input Transformations

O0O00n0

Training: @ -

Section 5.2 (Figure 4)

———————— L

Section 5.3 (Figure 5)

———————— -

Section 5.5 (Figure 6)

Guo et al.

Image cropping and rescaling
Bit-depth reduction
JPEG compression

Total variance minimization
Image quilting

adversary

Testing: ‘

transform model
n sy Bl
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"Countering Adversarial Images using Input Transformations." ICLR, 2018.

Original

TV Minimization

Image Quilting




Obfuscated Gradients = Fake Robustness

Backward Pass Differentiable Approximation (BPDA): can break non-differentiable operation based defenses

g(z) = f'(x)

find a linear approximation of the non-differentiable operations, e.g., discretization, compression etc.

Expectation Over Transformation (EOT) can break randomization based defenses

argxr,na,x E¢~r[log P(ye|t(z"))] T: a set of randomized transformations
subjectto  E;or[d(t(z), t(z))] < €
z € [0, 1]

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.

Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.



BPDA+EOT breaks 7 defenses published at ICLR 2018

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 (o) 0%

Ma et al. (2018) CIFAR 0.031 (4o0) 5%

Guo et al. (2018) ImageNet 0.005 (¢2) 0% We got a survivor!
Dhillon et al. (2018) CIFAR 0.031 (4o0) 0%

Xie et al. (2018) ImageNet 0.031 (loo) 0%
Song et al. (2018) CIFAR 0.031 ()  9%=
Samangouei et al. MNIST 0.005 (¢2)  55%x*x
(2018)

Madry etal. 2018) ~ CIFAR  0.031 (boo) 47% |”
Na et al. (2018) CIFAR 0.015¢) 15%

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.

Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.




How to Properly Evaluate a Defense?

Do not blindly apply multiple (similar) attacks
Try at least one gradient-free attack and one hard-label attack

Perform a transferability attack using a similar substitute model.

For randomized defenses, properly ensemble over randomness

For non-differentiable components, apply differentiable techniques (BPDA)

X X N N X

Verify that the attacks have converged under the selected

hyperparameters

AN

Carefully investigate attack hyperparameters and report those selected

AN

Compare against prior work and explain important differences

v'  Test broader threat models when proposing general defenses

Carlini, Nicholas, et al. “On evaluating adversarial robustness.” arXiv preprint arXiv:1902.06705 (2019). Athalye et al. “ Obfuscated

Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018



Robust Activation Functions

Block the internal activation: break the continuity

IO,

RelLU Maxpool

[elelelelele)
[elelerrie)

k-Winners-Take-All (k-WTA)

Xiao et al. "Enhancing Adversarial Defense by k-Winners-Take-All." ICLR, 2020.

Gleeleele]
|

Gle el ele)

Cle el Ce)

—>

LWTA

activation

[elelerelole)
®O000 0

k-WTA




Robust Loss Function

Max-Mahalanobis center (MMC) loss

Lscg € [C1,C1 +AC] § P Lymc € [€C4,C4 + AC]

: 2 ! (medium sample density): 2" % o~ (low sample density)
EIvgr e . A
1 I :
ok | o : y
ol o :
| ol | oip
I I I I

1 I
- o
| oy | o
"l I

I I
o Io—»
I
' :
: i ; Lgcg € [C5,C, +AC]
, ﬁy edium sample density):
I l l

SCE 5 MMC
® Prefixed feature center of label y in Lymc 4 Moving directions of learned features during training
® Learned features of training data with label y - - - Contours of the objective loss (C; > C,, AC is a small value)

Max-Mahalanobis center (MMC); SCE: softmax cross entropy

Pang et al. Rethinking softmax cross-entropy loss for adversarial robustness. ICLR, 2020.




Robust Inference

Mixup Inference (Ml)

T = )\CC—I—(].—)\)Sk

Algorithm 1 Mixup Inference (MI)

Input: The mixup-trained classifier F'; the input .
Hyperparameters: The sample distribution p,; the mixup ratio \; the number of execution V.
Initialize Fyg(z) = 0;
for k =1to N do
Sample Ys,k ~ ps(ys), Lsk " ps(fcslys,k);
Mixup z with =, as Ty, = Ax + (1 — A\)Zs ;
Update FMI(LU) = FMI(LU) + %F(fijk),
end for
Return: The prediction Fyy(z) of input x.

Pang et al. Mixup Inference: Better exploiting mixup to defend adversarial attacks. ICLR, 2020.



New Adaptive Attacks Break These Defenses

Attack Themes

Defense T1T T2 T3 T4 TS5 T6

Appendix B k-Winners Take All [XZZ20] ® e ©
Appendix C  The Odds are Odd [RKH19] e o T1: Attack the full defense
e .

Appendix D Generative Classifiers [LBS19] .
Appendix E  Sparse Fourier Transform [BMV18] @ T2: Target important defense parts
T3: Simplify the attack

Appendix F  Rethinking Cross Entropy [PXD™20]
T4: Ensure consistent loss function

Appendix G Error Correcting Codes [VS19]
Appendix H  Ensemble Diversity [PXD119]

T5: Optimize with different methods
T6: Use strong adaptive attacks

Appendix I  EMPIR [SRR20]

AppendixJ  Temporal Dependency [YLCS19]
Appendix K Mixup Inference [PXZ20]

Appendix L  ME-Net [YZKX19]

Appendix M Asymmetrical Adv. Training [YKR20]
Appendix N Weakness into a Strength [HYG™ 19]

Tramer et al. “On adaptive attacks to adversarial example defenses.” NeurlPS, 2020.




How to Evaluate a Defense?

0 Strong attacks:
v'  AutoAttack (one must-to-test attack)
v' Margin Decomposition (MD) attack (better than AutoAttack
on ViT)
v Minimum-Margin (MM) attack (new SOTA attack to test?)

@ Xiao et al., 2020 X v v Pang etal., 2020b X X e Roth etal.,, 2019 X v
v Zhang & Wang, 2019 v v %+ Senetal., 2020 v v # Shanetal., 2020 x X
A Mustafa et al., 2019 x x < Verma & Swami, 2019 X v & Yang etal., 2020 X v
D EXt ra rObUStneSS teStS <4 Buckman et al,, 2018 X v » Pangetal., 2020a X v - False Positive
‘/ . . » Sarkaretal., 2021 X v ® Zhang & Xu., 2020 x X - Suboptimal Re-evaluation
Attack unit tests (Zimmermann
Original * = ¥ SR " * > o v
Evaluation®* 4
et d I, 2022) Failed | Passed
Re- . i * Q!
Evaluation, : : . : —
0.00 0.20 0.40 0.60 0.80 0.951.00

Binarization Test Performance

Croce and Hein. “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks.” ICML, 2020.
Gao et al. Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack, ICML 2022.

Zimmermann et al. "Increasing Confidence in Adversarial Robustness Evaluations." arXiv preprint arXiv:2206.13991 (2022).




Adversarial Training

The idea is simple: just train on adversarial examples:

O MnilgR—HEIRIET i
- [RInEUE-> M- > XvEEA- > RE)l|%%

O llE&EE2— 1 min-maxSEIGHESS:

1 n
DD WILE IRICICIRD

=1

L(fo (x:), 1) = —yilog fo (x;) (3Z X AR K H )
x) o BIRIERAER, y; - x) BIIERRKS.

Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.



Adversarial Training

ELA ARG e-BBEEIRS:
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Adversarial Training

Adversarial training produces smooth decision boundary




Early Adversarial Training Methods

* 2014fF, Szegedy et al. EEFFREXITFSNINC X HERER 7 XI50)l145 , FL-BFGSITERY
HREMBEF—EERITEA | FRINENIZRIiES.

- M : FEMMELAEGEIRSEEN
+ 20154 , Goodfellow et al. 2H{FERFGSM ( B> ) IRTEAERBIRTHUAE AR || 252 I 4%

min B yyep [aLoe(f(@),y) + (1 = @) Lop(f(@aa). y)]

Tody = & + € - sign(VoLop(f(2). 1))

GoodfellowF A F R ERFEENXNTHFAR, FHARAPEENTFRLFRT

Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. ICLR 2014.

Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.



Min-max Robust Optimization

The First Proposal of Min-Max Optimization

Xadv
min E, , ep max L(f(x + 7)]y)
0 7] <e
\ |
' i ' r
AMNERER/IME EPE A
Outer minimization Inner maximization

Nokland et al. Improving back-propagation by adding an adversarial gradient. arXiv:1510.04189, 2015.
Huang et al. Learning with a strong adversary, ICLR 2016. Shaham et al. Understanding adversarial training:
Increasing local stability of neural nets through robust optimization, arXiv:1511.05432, 2015




Virtual Adversarial Training

VAT: a method to improve generalization

min max _ “(z,y)eD [LCE (f(:c), y) iN )\EKL(f(w)a f(wadv) ]

0 ||zadgv—zll2<e

0 Differences to adversarial training
* L2 regularized perturbation
* Use both clean and adv examples for training
 Use KL divergence to generate adv examples

Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.



Weaknesses of Early AT Methods

min L(z,y)eD ﬁf}”aé [’(f(m + r)’ y)

0 Use FGSM or BIM to solve the inner maximization problem

0 FGSM and BIM were later found to be weak attacks

0 Overfitto e-robustness (not robust to <e attacks)

0 Overfit to single-step attacks (not robust to multi-step attacks)
v' These methods are fast! Only takes x2 time of standard training

Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.



PGD Adversarial Training

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 ({o) 0%
Ma et al. (2018) CIFAR 0.031 ({o) 5%
Guo et al. (2018) ImageNet 0.005 (¢2) 0%
Dhillon et al. (2018) CIFAR 0.031 (4o0) 0%

Xie et al. (2018) ImageNet 0.031 (loo) 0%
Song et al. (2018) CIFAR 0.031 ls) 9%
Samangouei et al. MNIST 0.005 (£2)  55%x*x
(2018)

Madry etal. 2018)  CIFAR  0.031 (beo) 47% |”
Na et al. (2018) CIFAR 0.015 ) 15%

We got a survivor!

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.

Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.



PGD Adversarial Training

A Saddle Point Problem

min E, ,)~p max L(f(x + 7),y)

0 7] <e
| J\ |
| |
HNERER/IME WEBE A
Outer minimization Inner maximization
| |
|

A saddle point (constrained bi-level optimization) problem

In constrained optimization, Projected Gradient Descent (PGD) is the best first-order solver

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.



PGD Adversarial Training

Projected Gradient Descent (PGD)

adv

it = Proj,. s (azt + o - sign(Va ) L(6, ', C‘/))

x/\@ Projection x/\

(Clipping)

O PGDis an optimizer
[0 PGDis also known as an adv attack in the field of AML

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.



PGD Adversarial Training

Projected Gradient Descent (PGD)

it = Proj,. s (azt + o - sign(Va ) L(6, ', C‘/))

adv
X 6/7/

Xo + Uniform Noise

>

Xo+ 8 € [—€,+€]

(R €,

0 Random initialization

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.



PGD Adversarial Training

Characteristics of PGD adversarial training

BRE
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Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks.” ICLR. 2018.

llyas et al. “Adversarial examples are not bugs, they are features.”

NeurlPS, 2019.




PGD Adversarial Training

® ._/0 O. .o

HENR R Ak St
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=184
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(b) CIFAR-10 (c) Restricted ImageNet

Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks.” ICLR. 2018.

llyas et al. “Adversarial examples are not bugs, they are features.” NeurlPS, 2019.



Dynamic Adversarial Training (DART)

- 46
gl e —&— Train: PGD-10 45
= Train: PGD-£/2 - Train: PGD-20 )
S 44 —< Train: PGD-¢/4 §44~ . o
0 42| —— Train: PGD-¢/6 0 ~ Irain:PGD-30 a0
v —~— Train: PGD-¢/8 /2, 0 ] *— Train: PGD-40 2
S 42 S a2 H 35
)] ()] X >
) o o o 30 —&— Train: PGD
o 401 T , e 401 ~&— Train: FGSM-PGD
391 % 391 B 25 S0 75 160 125
7 /4 /6 /8 10 20 30 40 Epoch
Test attack step size Test attack step
1k 1= gdta B2y 1K = By ) : =
PGDE KX B4R PGDEEXI SR I HRE B BRI T

O FF105XF#1)l|Z (PGD-10 Adversarial Training) &1x%:
- &P KEe/2He/4
- FEEMAKR, REEBIRETe-ballpyih it

O I HF AR RMsiEe &M

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019.




Dynamic Adversarial Training (DART)

How to measure the convergence of the inner maximization?

Definition ( First-Order Stationary Condition (FOSC))

Given a sample x° € X, let x¥ be an intermediate example found at the k™ step of the
inner maximization. The First-Order Stationary Condition of x* is:

k) — _ Lk k
c(x¥) = max (x — x*, v, £(0,x5)),

where X = {x||lx — x°||c < €} is the input domain of the e-ball around normal example
x%, £(8,x*) = £(hg(x¥,y), and (-) is the inner product.

FOSC:
— Inspired by the Frank-Wolfe gap for constrained min-max optimization.

— Smaller value of c(xk) indicates better convergence of the inner maximization.
— It has a close-form solution, affine invariant and norm independent.

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019.



Dynamic Adversarial Training (DART)

Dynamic Adversarial Training:
— Weak attack for early training, strong attack for later training
— Weak attack improves generalization, strong attack improves final robustness.

Convergence analysis:

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Let Robustness on CIFAR-10 with WideResNet
A-:. L S(QO) - ming Ls(0). If the step size of the outer Sefonse Clean FGSM PGD20  C&WL
minimization is set to n; = n = min(1/L, \/A/Lc?T). Madry’s 873 561 45.8 46.8
Then the output of Algorithm 1 satisfies Curriculum | 7743 57.17  46.06 4228
Dynamic 85.03 63.53 48.70 47.27
T-1

1 LA 5L% 6

— > EJ[||VLs(0)|3] < 404/ — O~ DART improves robustness

7 2 ElIVEs@)1E] < VTt p

where L = (Lo Lyo/ 1t + Log).

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019.



TRADES

Use distribution loss (KL) for inner and outer optimizations

min By, y)p | Lop(f(®), y) + Amax Ly (f(@), f(@ +7))]

@ RES
STl N ~— -

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.



TRADES

Characteristics of TRADES

TRADESBEESUH 7 RERER A X BU#H 1 MR/ M
O {ERAKLISEXTEARRNLR  SEHRARE
O FEEAtRs5)14  BFFEEEFN T SEmER
O ETFKISHEAERESEIENASRE

O  8Epk)I|EKEZEIEL PGDIIHUIISE i BHIRTRIAR

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.

Winning solutions of
NeurlPS 2018
Adversarial Vision
Challenge




TRADES

Experimental results of TRADES

Zhang et al.

Table 5. Comparisons of TRADES with prior defense models under white-box attacks.

Defense

|| Defense type | Under which attack | Dataset | Distance | Anat(f) | Arob(f)

Buckman et al. (2018)
Maet al. (2018)
Dhillon et al. (2018)
Song et al. (2018)
Na et al. (2017)

X o \
Zheng et al. (2016)
Kurakin et al. (2017)
Ross & Dosh1 Velez (2017)

gradient mask
gradient mask
gradient mask
gradient mask
gradient mask

regularization
regularization
regularization

Zin g Al
regularization

Athalye et al. (2018)
Athalye et al. (2018)
Athalye et al. (2018)
Athalye et al. (2018)
Athalye et al. (2018)

FGSM20 PGD
FGSM“" (PGD

(PGD)
FGSM?° (PGD)
FGSM?20 (PGD)
120 (P

FGSM? (P D

CIFAR10
CIFAR10
CIFAR10
CIFAR10

0.031 (4o)
0.031 (Y)
0.031 (4o)
0.031 ()
0.015 (o)
0. y

0 031 (o)
0.031 (4so)
0.0 /

0%
5%
0%

O%

TRADES a/x= .0) regularization DeepFool (£,) CIFAR10 | 0.031 (¢o) | 88.
TRADES (1/\ = 6.0) regularization DeepFool (¢,) CIFARI0 | 0.031 (fs) | 84.92% | 61.38%
TRADES (1/\ = 1.0) regularization LBFGSAttack CIFARIO | 0.031 (f,) | 88.64% | 84.41%
TRADES (1/\ = 6.0) regularization LBFGSAttack CIFARIO | 0.031 ({s) | 84.92% | 81.58%
TRADES (1/\ = 1.0) regularization MI-FGSM CIFARIO0 | 0.031 (¢,) | 88.64% | 51.26%
TRADES (1/\ = 6.0) regularization MI-FGSM CIFARI10 | 0.031 ({s) | 84.92% | 57.95%
TRADES (1/\ = 1.0) regularization C&W CIFARIO | 0.031 ({s,) | 88.64% | 84.03%
TRADES (1/\ = 6.0) regularization C&W CIFARIO | 0.031 () | 84.92% | 81.24%
Samangouei et al. (2018) || gradient mask | Athalye et al. (2018) | MNIST 0.005 (42) - 55%
Madry et al. (2018) robust opt. FGSM% (PGD) MNIST 0.3 (40) 99.36% | 96.01%
TRADES (1/) = 6.0) regularization FGSM*® (PGD) MNIST 0.3 (o) | 99.48% | 96.07%
TRADES (1/\ = 6.0) regularization C&W MNIST 0.005 (2) | 99.48% | 99.46%

"Theoretically principled trade-off between robustness and accuracy." ICML, 2019.




TRADES vs VAT vs ALP

TRADES: min K. y)~p [ECE(f (), y) + Amax Licw.(f (@), [ (2 + ’r))}

||

BTt {ﬂ;{ﬁ] T h J
271 (et

Virtual Adversarial Training: min  max ]E(m,y)eD[ECE(f(w),y)-I-)\EKL(f(m),f(fDadv))]

0 ||ma.dv—:c||2§5

Adversarial Logits Pairing: min & ,)ep [ max Lce(f(x+7).y) + Al f(x+7) — f(fl?)Hg]

0 Il <e

FRIRSOCICIESR | ARIFIRKIERE | SERERRK

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.
Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.
Kannan, Harini, Alexey Kurakin, and lan Goodfellow. "Adversarial logit pairing." arXiv preprint arXiv:1803.06373 (2018).




MART: Misclassification Aware adveRsarial Training

Min-max Adversarial Training:

.1
minTYL, max  L(fo(x) )

0
0 lxi-xi]| < €
where, x{ is a natural (clean) training sample, y; is the label of x; .

Adversarial examples are only defined on correctly
classified examples, what about misclassified examples ?

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.



MART: Misclassification Aware adveRsarial Training

The influence of misclassified and correctly classified examples:

* A pre-trained network to select the same size (13%)
» Subset of misclassified examples S~
 Subset of correctly classified examples ST

47.5
RN 450 - —
w0 [ A/\"./\\.\f SNv-_
n 42.5 !
e
42 40.0 Misclassified examples have a significant
§ 37.5 impact on the final robustness!
m 350 e Perturb (PGDIO) ST v S+
g Not perturb s*
- S —— Not perturb S~
=B 20 40 60 80 100

Training Epoch

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.




MART: Misclassification Aware adveRsarial Training

O For inner maximization process: O For outer minimization process:
* Weak attack on misclassified examples S~ e Regularization on misclassified examples S~
« Weak attack on correctly classified examples ST ¢ Regularization on correctly classified examples S*

47.5 47.5
B <
X450 3 45.0
(%)}
Q 425 ¢ 42.5
C
% 40.0 40,0
= >
0375
= 37.5 g -
350 —--- PGD®on s~ ust 535_0 -—— CEonsS us
4'61”-; 32.5 FGSM on s* $ 325 + KL on S$*
= —— FGSM on S~ =" —— +KLon S~
AR 0 20 40 60 80 100 300 0 20 40 60 80 100

Training Epoch Training Epoch

(b) Inner maximization (c) Outer minimization

different maximization techniques have different minimization techniques have
negligible effect significant effect

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.




MART: Misclassification Aware adveRsarial Training

Misclassification aware adversarial risk:

 Adversarial risk:

* Correctly classified and misclassified example:
S,:LG ={i:i € [nl,ho(x;) =w:} and S, ={i:i€ [n], ho(x:)# yi}

 Misclassification aware adversarial risk:

ming Rumisc(hg) : = %(Zz’e&.‘f{e Rt (he,x;) + ZieS;e R~ (he, Xz))
= 1577 {L(he(X}) # yi) + L(he(x:) # he(X})) - L(he(x:) # i) }




MART: Misclassification Aware adveRsarial Training

e Surrogate loss functions (existing methods and MART):

Defense Method Loss Function

Standard CE(p(x/,0),y)

ALP CE(p(X',0),y) + - [[p(X',0) — p(x,0)|]3

CLP CE(p(x,0),y) + A - [p(X',0) — p(x,0)|3
TRADES CE(p(x, 6),4) + A - KL(p(x, 0)[p(&’, 0)

MMA CE(p(X,6),y) - 1(ho(x) = y) + CE(p(x,8),1) - 1(ho(x) # )
MART BCE(p(%', 8),y) + A - KL(p(x, 0)[|p(X,6)) - (1 — py(x,0))

* Semi-supervised extension of MART:  BCE(p(xi.6),y;) = —log (py. (X}, 8)) — log (1 — max py(x;, 0))

LYART(0) = ) R (x5, 9550) + 7 Z Eunsup Xi, i; 0)
1€ Squp 1ESyns




MART: Misclassification Aware adveRsarial Training

Robustness of MART:

* White-box robustness: ResNet-18, CIFAR-10, €=8/255

MNIST CIFAR-10

Defense  \amral FGSM = PGD2 CW., | Nawral FGSM PGD2 CW.
Standard ~ 99.11 9717 9462 9425 | 8444 6189 4755 4508
MMA 9892 9725 9525 9477 | 8476 6208 4833 4577
Dynamic ~ 98.96  97.34 9527 9485 | 8333 6247 4940 4694
TRADES 9925  96.67 9458 9403 | 8290 6282 5025 4829
MART 9874 9787 9648 96.10 | 8307  65.65 | 5557 54.87

* White-box robustness: WideResNet-34-10, CIFAR-10, €=8/255

FGSM PGD*" PGD"% CWos

Best Last Best Last Best Last Best Last
Standard 87.30 56.10 56.10 52.68 49.31 5155 49.03 50.73 48.47
Dynamic 84.51 63.53 63.53 55.03 51.70 54.12 50.07 51.34 49.27
TRADES 84.22 64.70 64.70 56.40 53.16 55.68 5127 5198 51.12
MART 84.17 67.51 67.51 58.56 57.39 57.88 55.04 |54.58 54.53

Defense Natural




Using More Data to Improve Robustness

80 Million Tiny Images

sual Dictionary

CIFAR-10

airplane %.V,\ » ..="—'.
automobile EE“HE‘
bird TmB VB FEREM
cat S LA
deer .R'&ﬁnﬁ

o HESUORANAE
ro N R I D S
ERNEEOMEXER

e Rl EE G e select (carefully) 100K/500K images into CIAFR-10
wer o R s O S R R

1.4

500K (10x)

horse

Alayrac et al. “Are labels required for improving adversarial robustness?.” NeurlPS, 2019.
Carmon et al. “Unlabeled data improves adversarial robustness.” NeurlPS 2019




UAT & RST

Unsupervised Adversarial Training (UAT):

=

oL 0)= E_ sup D(p4(-|z),po(.|2"))
z~P(X) 2’ eN(x)

L(8) = Lsup(8) + NLunsup(8)] —> =

L@ = E  sup xent(j(z),po(.|z"))
— z~P(X) 2’eN,(z)

Robust Self-Training (RST):

G e B L n == X;: new samples
minimizing ZLrobust(oaxiayi)+wZLrobust(0 mia?Jz’) { 572 : pseudo-labels
=1 g==I]

Alayrac et al. “Are labels required for improving adversarial robustness?.” NeurlPS, 2019.
Carmon et al. “Unlabeled data improves adversarial robustness.” NeurlPS 2019




State-of-the-art: AT Methods

RoBUSTBENCH Leaderboards Paper FAQ Contribute Model Zoo %

Leaderboard: CIFAR-10, £, = 8/255, untargeted attack

Show | 15 ¥ entries Search:
AutoAttack Best known AA eval. A
Ran Standard A Extra Architectur
A Method robust robust potentially Venue
k accuracy . data e
accuracy accuracy unreliable

Robust Principles: Architectural Design

. . : RaWideResNet-
1 Principles for Adversarially Robust CNNs 93.27% 71.07% 71.07% X X —— BMVC 2023
It uses additionmagos in training.

Better Diffusion Models Further Improve )
WideResNet-70-

2 Adversarial Training 93.25% 70.69% 70.69% X X 16 ICML 2023

B, B, ERKA |
’ y IETE LI
[It uses additional 50M synthetic images in trafning.]

Improving the Accuracy-Robustness Trade-off of ResNet-152 + [ ] ﬁﬁi% '

Classifiers via Adaptive Smoothing WideResNet-70- arXiv, Jan
3 95.23% 68.06% 68.06% X .
It uses an ensemble of networks. The robust base 16 + mixing 2023 ) ﬁﬁ i ﬁ
classifier usmagesz network
Decoupled Kullback-Leibler Divergence Loss WideResNet-28- arXiv, May

4 92.16% 67.73% 67.73%
It uses additi()n( images in training. X X 10 2023

Better Diffusion Models Further Improve )
WideResNet-28-

5 Adversarial Training 92.44% 67.31% 67.31% X X - ICML 2023
It uses additionalj2 images in training.
Fixing Data Augmentation to Improve
Adversarial Robustness WideResNet-70- arXiv, Mar
) . ) 92.23% 66.58% 66.56% X
66.56% robust accuracy is due to the original evaluation 16 2021
(AutoAttack + MultiTargeted)
Improving Robustness using Generated Data
It uses additional 100M synthetic images in training. WideResNet-70- NeurlPS
) o ) 88.74% 66.11% 66.10% X X
66.10% robust accuracy is due to the original evaluation 16 2021

(AutoAttack + MultiTargeted)

https://robustbench.github.io/




State-of-the-art: AT Methods

® Models without extra data

> 70% ® Models with extra data T
© a
o % [ ® ® s
g °0% ! : . 0t .0 Clean accuracy: 94% vs 66% (robustness)
@ 50% . f— $
Q [ J ® [ @ .
£ 40% | 5 : I DNN: WideResNet-70-16; Dataset: CIFAR-10
S o > Perturbation: € = 8/255;
2o [ Evaluation attack: AutoAttack
2 20% °
SRS O FEF 7
S EE 896 ¢ &
¢ g3

https://robustbench.github.io/



State-of-the-art: DNN Architecture

W Home LeaderBoards APIDocs ModelZoo Contact Toolkit Paper

RobustART

RobustART is the first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitectural design (49 human-designed off-the-shelf
architectures and 1200+ neural architecture searched networks) and Training techniques (10+ general ones e.g., extra training data, etc) towards diverse noises (adversarial, natural, and system
noises). Our benchmark (including open-source toolkit, pre-trained model zoo, datasets, and analyses): (1) presents an open-source platform for conducting comprehensive evaluation on diverse
robustness types; (2) provides a variety of pre-trained models with different training techniques to facilitate robustness evaluation; (3) proposes a new view to better understand the mechanism

towards designing robust DNN architectures, backed up by the analysis. We will continuously contribute to building this ecosystem for the community.

Robustness * MM
_ -Mixer
Tralning Dat g . kBT » o (\(\j ~
raining Data upervision &* oolle o oo
ResNet
* ----- e - ‘E“:Fi* .
T Py N " Y MobileNet

Un-labeled (?

Labeled éf\ i ¢ ¢
D -
R
‘\\\ AN
, X2 R .
Training R X Architecture

Techniques Design

SN

http://robust.art/  Tang et al. “RobustART. Benchmarking robustness on architecture design and training techniques.”arXiv:2109.05211,%@f;.
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State-of-the-art: DNN Architecture

Reduce the deep layers can improve robustness

t 95 —
o - A v >=525
oc 54
0 =
Block 13 > | <=50.0 |
Block 12 by 53 Tea * _WRN-34-10
Blok 2 g 3 PO s o Others d: depth
E [} [ ] (] .‘¢";. e 1 4 d . —
Block 10 _ué o'. .. .o.. o o _595.. o %° ..'. N 'o“.. 5-5-5' depth_s
Block 9 N o5l e - . e " oo @ at all 3 stages
[ JPY o ® o () °
Block 8 % S N ) ° e o e ° o ® * o
Block 7 &5 0 50 % y PP e
n 15} ¥ .93 d1.53 o1 57 i3-1.9 %7
B|Ock 6 o 4351—11_1 1-3-3 i1.3-5 X 7-9
i 49 .31 13-1-3 315 a7 -39
Block 5 3 48 ¥1s 1-1-9
Block 4 P ; H47
Block 3 = 115
Block2  |j 0 20 30 40 50 60 70 80
Block 1 Parameters (M)

>

WideResNet-34-10 Depth Grid Search

Huang et al. “Exploring architectural ingredients of adversarially robust deep neural networks.” NeurlPS 2021.




Certified Defense vs Empirical Defense

* Certified robustness (Sinha et al. 2018; Cohen et al. 2018; Lee et al. 2019)
— Gaussian randomized smoothing -> robustness with the £, norm ball
— Laplacian randomized smoothing -> £, robustness
— Uniform randomized smoothing -> £ robustness
— Pros: robustness guarantees, RSN TSR
— Cons: 1) deep networks are hard to certify, 2) guarantees are loose, 3) need to
train the mode in certain ways

< % TEEs N FEHAE W

HEERAT Y

Convex hull:

2o+ £,

Li et al. Sok: Certified robustness for deep neural networks, S&P, 2023



Existing Challenges

O How to attack large language/vision/multi-model models

O How to defend large language/vision/multi-model models

O How to adapt adv training for different applications

O How to reduce the cost of defense: acceleration, loss of clean acc

O How to combine adv detection with adversarial training

O How to include adv training into the pretraining/finetuning pipeline
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