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Recap: week 4

1. Adversarial Example Detection

p Secondary Classification Methods (二级分类法)

p Principle Component Analysis (主成分分析法，PCA)

p Distribution Detection Methods (分布检测法)

p Prediction Inconsistency (预测不一致性)

p Reconstruction Inconsistency (重建不一致性)

p Trapping Based Detection (诱捕检测法)



Adversarial Attack Competition

Link: https://codalab.lisn.upsaclay.fr/competitions/15669?secret_key=77cb8986-d5bd-4009-82f0-7dde2e819ff8

https://codalab.lisn.upsaclay.fr/competitions/15669?secret_key=77cb8986-d5bd-4009-82f0-7dde2e819ff8


Adversarial Defense vs Detection

p The weird relationship between defense and detection
ü Detection IS defense
ü But… when we say defense, we (most of the time) mean the 

model is secured, yet detection cannot do that…
ü In survey papers: detection is defense
ü In technical papers: defense is defense not detection

p Differences
ü Defense is to secure the model or the system
ü Detection is to identify potential threats, which should be 

followed by a defense strategy, e.g., query rejection (but 
mostly ignored)

ü By defense, it mostly means robust training methods



Defense Methods

p Early Defense Methods

p Early Adversarial Training Methods

p Later Adversarial Training Methods

p Remaining Challenges and Recent Progress



A Recap of the Timeline

2014年
Goodfellow
等人提出快速

单步攻击
FGSM及对抗

训练

2015年简单
检测方法

（PCA）和
对抗训练方

法

2016年提出
对抗训练的
min-max优

化框架

2017年大量
的对抗样本
检测方法和
攻击方法
（BIM、

C&W）、
10种检测方
法被攻破

2019年
TRADES及
大量其他对

抗训练方法、
第一篇

Science文章

2018年物理世界
攻击方法、检测
方法升级、PGD

攻击与对抗训练、
9种防御方法被攻

破

2020年
AutoAttack
攻击、Fast对

抗训练

2021年增大
模型、增加
数据的对抗
训练、领域

延伸

2022年尚未
解决的问题，
攻击越来越多，
防御越来越难

2013年
Biggio等人
与Szegedy
等人发现对

抗样本



Principles of Defense

p Block the attack (掐头去尾)
Ø Mask the input gradients
Ø Regularize the input gradients
Ø Distill the logits
Ø Denoise the input

p Robustify the model (增强中间)
Ø Smooth the decision boundary
Ø Reduce the Lipschitzness of the 

model
Ø Smooth the loss landscape



Adversarial Attack

Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. ICLR 2014.
Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.

max
!!
	 𝐿(𝑓" 𝑥# , 𝑦) 	 subject	to 𝑥# − 𝑥 $ ≤ 𝜖	for	x ∈ 𝐷%&'%

min
"

=
!",	 *" 	∈	,#$%"&

𝐿(𝑓" 𝑥- , 	𝑦- )模型训练: 

对抗攻击: 

分类错误 扰动很小 测试阶段攻击

扰动上限: 𝑥! − 𝑥 "#$,	'	() ∞	, e.g., ⋅ ∞ ≤ *
'++



Performance Metrics

• Measurement of clean performance:

accuracy (clean accuracy) =
!"##$!%&'	!&)**+,+$-	𝐜𝐥𝐞𝐚𝐧	*)34&$*	

%"%)&	𝐜𝐥𝐞𝐚𝐧	*)34&$*
 

• Measurement of adversarial robustness:

robustness (robust accuracy) =
!"##$!%&'	!&)**+,+$-	𝐚𝐝𝐯𝐬	*)34&$*	
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• Other metrics: maximum perturbation for 100% attack success rate 



Defense Methods

p Early Defense Methods

p Early Adversarial Training Methods

p Advanced Adversarial Training Methods

p Remaining Challenges and Recent Progress



Defensive Distillation

• Making large logits change to be ”small”
‒ Scaling up logits by a few magnitudes;
‒ Retrain the last layer with scaled logits;

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016



Defensive Distillation

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016
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Defensive Distillation

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016



Defensive Distillation

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016



Defensive Distillation

Papernot et al. Distillation as a defense to adversarial perturbations against deep neural networks, S&P, 2016

Distillation makes input gradients 𝛻&	𝐿(𝑓' 𝑥 , 𝑦) to be small!



Defensive Distillation Is Not Robust

Carlini, Nicholas, and David Wagner. "Defensive distillation is not robust to adversarial examples." arXiv preprint arXiv:1607.04311 (2016).

*𝑓' 𝑥 = softmax(z(x)/T)

It can be evaded by attacking the distilled network with the temperature T.

𝑥( = 𝑥 + 𝜀 ⋅ sign𝛻&	𝐿( *𝑓' 𝑥 , 𝑦)



Lessons Learned

Carlini, Nicholas, and David Wagner. "Defensive distillation is not robust to adversarial examples." arXiv preprint arXiv:1607.04311 (2016).

p Distillation is not a good solution for adversarial robustness

p Vanishing input gradients can still be recovered by a reverse operation

p A defense should be evaluated against the adaptive attack to prove real 
robustness



Input Gradients Regularization

Ross et al. "Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients." AAAI, 2018.
Drucker, Harris, and Yann Le Cun. “Improving generalization performance using double backpropagation.” TNN,1992.

𝐿)*+ = 𝐿 𝑓' 𝑥 , 𝑦 + 𝜆 𝛻&	𝐿(𝑓' 𝑥 , 𝑦) ,
,

Classification loss Input gradients regularization

Directly regularize the input gradients 𝛻&	𝐿(𝑓' 𝑥 , 𝑦) to be small

Related to the double backpropagation proposed by Drucker and Le Cun (1992):



Input Gradients Regularization

Ross et al. "Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients." AAAI, 2018.

Issues: 1) limited adversarial robustness, 2) hurts learning

蒸馏的

对抗训练的

正则化的



Feature Squeezing

Xu et al. "Feature squeezing: Detecting adversarial examples in deep neural networks." NDSS, 2018.

Compress the input space

It also hurts performance on large-scale image datasets.



Thermometer Encoding

Buckman et al. "Thermometer encoding: One hot way to resist adversarial examples." ICLR, 2018.

Discretize the input to break small noise

Proposed Thermometer Encoding



Input Transformations

Guo et al. "Countering Adversarial Images using Input Transformations." ICLR, 2018.

p Image cropping and rescaling
p Bit-depth reduction
p JPEG compression
p Total variance minimization
p Image quilting



Obfuscated Gradients = Fake Robustness

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.
Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.

Backward Pass Differentiable Approximation (BPDA): 

Expectation Over Transformation (EOT)

T: a set of randomized transformations

can break non-differentiable operation based defenses

can break randomization based defenses

find a linear approximation of the non-differentiable operations, e.g., discretization, compression etc. 



BPDA+EOT breaks 7 defenses published at ICLR 2018

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.
Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.

We got a survivor!



How to Properly Evaluate a Defense?

Carlini, Nicholas, et al. “On evaluating adversarial robustness.” arXiv preprint arXiv:1902.06705 (2019). Athalye et al. “ Obfuscated 
Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018

ü Do not blindly apply multiple (similar) attacks

ü Try at least one gradient-free attack and one hard-label attack

ü Perform a transferability attack using a similar substitute model.

ü For randomized defenses, properly ensemble over randomness

ü For non-differentiable components, apply differentiable techniques (BPDA)

ü Verify that the attacks have converged under the selected 

hyperparameters

ü Carefully investigate attack hyperparameters and report those selected

ü Compare against prior work and explain important differences

ü Test broader threat models when proposing general defenses



Robust Activation Functions

Xiao et al. "Enhancing Adversarial Defense by k-Winners-Take-All." ICLR, 2020.

Block the internal activation: break the continuity

k-Winners-Take-All (k-WTA) activation



Robust Loss Function

Pang et al. Rethinking softmax cross-entropy loss for adversarial robustness. ICLR, 2020.

Max-Mahalanobis center (MMC) loss

Max-Mahalanobis center (MMC); SCE: softmax cross entropy



Robust Inference

Pang et al. Mixup Inference: Better exploiting mixup to defend adversarial attacks. ICLR, 2020.

Mixup Inference (MI)



New Adaptive Attacks Break These Defenses

Tramer et al. “On adaptive attacks to adversarial example defenses.” NeurIPS, 2020.

T1: Attack the full defense
T2: Target important defense parts
T3: Simplify the attack
T4: Ensure consistent loss function
T5: Optimize with different methods
T6: Use strong adaptive attacks



How to Evaluate a Defense?

Croce and Hein. “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks.” ICML, 2020. 
Gao et al. Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack, ICML 2022.
Zimmermann et al. "Increasing Confidence in Adversarial Robustness Evaluations." arXiv preprint arXiv:2206.13991 (2022).

p Strong attacks:
ü AutoAttack (one must-to-test attack)
ü Margin Decomposition (MD) attack (better than AutoAttack 

on ViT)
ü Minimum-Margin (MM) attack (new SOTA attack to test?)

p Extra robustness tests 
ü Attack unit tests (Zimmermann 

et al, 2022)



Adversarial Training

Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.

The idea is simple: just train on adversarial examples!

p 对抗训练是一个min-max鲁棒优化框架:

min
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𝐿(𝑓!(𝑥"), 𝑦")

𝐿 𝑓! 𝑥" , 𝑦" = −y3log 𝑓! 𝑥"  (交叉熵损失函数)

𝑥"4： 原始训练样本, 𝑦"： 𝑥"4的正确类别.

p 对抗训练是一种数据增广方法

‒ 原始数据-> 对抗攻击-> 对抗样本->模型训练



Adversarial Training

𝒙

𝝐: ℓ
𝟐

𝒙
𝝐: ℓ!

ℓ/范式更常见

在以𝒙为中心的 𝝐-球范围内寻找对抗性最强的样本 



Adversarial Training

Adversarial training produces smooth decision boundary

正常边界 生成对抗样本 训练后



Early Adversarial Training Methods

Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. ICLR 2014.
Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. ICLR 2015.

• 2014年， Szegedy et al. 在其解释对抗样本的论文中已探索了对抗训练，用L-BFGS攻击对
神经网络每一层生成对抗样本，并添加到训练过程中。

• 发现：深层对抗样本更能提高鲁棒性

• 2015年，Goodfellow et al. 提出使用FGSM（单步）攻击生成的对抗样本来训练神经网络

Goodfellow等人并未使用中间层的对抗样本，因为发现中间层对抗样本没有提升



Min-max Robust Optimization

Nokland et al. Improving back-propagation by adding an adversarial gradient. arXiv:1510.04189, 2015.
Huang et al. Learning with a strong adversary, ICLR 2016. Shaham et al. Understanding adversarial training: 
Increasing local stability of neural nets through robust optimization, arXiv:1511.05432, 2015

The First Proposal of Min-Max Optimization

内部最大化
Inner maximization

外部最小化
Outer minimization

𝝌𝒂𝒅𝒗



Virtual Adversarial Training

Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.

VAT: a method to improve generalization

p Differences to adversarial training
• L2 regularized perturbation
• Use both clean and adv examples for training
• Use KL divergence to generate adv examples



Weaknesses of Early AT Methods

Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.

p Use FGSM or BIM to solve the inner maximization problem
p FGSM and BIM were later found to be weak attacks
p Overfit to  𝜖-robustness (not robust to <𝜖 attacks)
p Overfit to single-step attacks (not robust to multi-step attacks)

ü These methods are fast! Only takes x2 time of standard training



PGD Adversarial Training

Athalye et al. “ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.” ICML, 2018.
Athalye et al. Synthesizing robust adversarial examples. ICML, 2018.

We got a survivor!



PGD Adversarial Training

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.

A Saddle Point Problem

内部最大化
Inner maximization

外部最小化
Outer minimization

A saddle point (constrained bi-level optimization) problem

In constrained optimization, Projected Gradient Descent (PGD) is the best first-order solver 



PGD Adversarial Training

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.

Projected Gradient Descent (PGD)

p PGD is an optimizer
p PGD is also known as an adv attack in the field of AML

𝝐: ℓ5

𝒙𝟎 Projection

(Clipping) 𝝐: ℓ5

𝒙𝟎
𝒙𝟏 𝒙𝟏



PGD Adversarial Training

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." ICLR. 2018.

Projected Gradient Descent (PGD)

p Random initialization

𝝐: ℓ5

𝒙𝟎

𝝐: ℓ5𝒙𝟎 + 𝜹 ∈ [−𝝐,+𝝐]

+ Uniform Noise

𝒙𝟎8



PGD Adversarial Training

Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks.” ICLR. 2018. 
Ilyas et al. “Adversarial examples are not bugs, they are features.” NeurIPS, 2019.

Characteristics of PGD adversarial training

p 只在对抗样本上训练模型

p 通用鲁棒性：< 𝝐鲁棒性和多步攻击鲁棒性

p 需要大容量模型

p 需要更多训练数据

p 对抗训练会产生平滑的决策边界

p 对抗训练会对内部激活产生一种截断效果

p 对抗训练会强制模型学习鲁棒特征

p 鲁棒性提升的同时干净准确率会下降

p 训练很耗时，相当于5-10倍普通训练



PGD Adversarial Training

Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks.” ICLR. 2018. 
Ilyas et al. “Adversarial examples are not bugs, they are features.” NeurIPS, 2019.

决策边界：

鲁棒特征：

普通训练

对抗训练

普通训练 对抗训练对抗样本



Dynamic Adversarial Training (DART)

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019. 

p 对于10步对抗训练（PGD-10 Adversarial Training）来说:
‒ 最优步长是𝝐/𝟐和𝝐/𝟒
‒ 步数影响不大，只要足够探索到𝝐-ball的边界

p训练初期使用弱对抗样本反而会提高鲁棒性

PGD步长对鲁棒性影响 PGD步数对鲁棒性影响 训练初期使用简单攻击



Dynamic Adversarial Training (DART)

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019. 

How to measure the convergence of the inner maximization? 

Definition ( First-Order Stationary Condition (FOSC))

Given a sample 𝑥4 ∈ 𝑋, let 𝑥9 be an intermediate example found at the k:; step of the 
inner maximization. The First-Order Stationary Condition of 𝑥9  is:

𝐜 𝒙𝒌 = 𝐦𝐚𝐱	
𝐱∈𝝌

𝐱 − 𝒙𝒌, 𝜵𝒙𝐟(𝛉, 𝒙𝒌) ,
where Χ = 𝑥| 𝑥 − 𝑥4 5 ≤ 	𝜖  is the input domain of the 𝜖-ball around normal example 
𝑥4, 𝑓 𝜽, 𝑥9 = ℓ(ℎ𝜽(𝑥9 , 𝑦), and ⋅  is the inner product.

FOSC:
‒ Inspired by the Frank-Wolfe gap for constrained min-max optimization.
‒ Smaller value of 𝑐 𝑥1  indicates better convergence of the inner maximization.
‒ It has a close-form solution, affine invariant and norm independent.



Dynamic Adversarial Training (DART)

Wang et al. “On the Convergence and Robustness of Adversarial Training.” ICML. 2019. 

Dynamic Adversarial Training:
‒ Weak attack for early training, strong attack for later training
‒ Weak attack improves generalization, strong attack improves final robustness.

Convergence analysis:

DART improves robustness

Robustness on CIFAR-10 with WideResNet



TRADES

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.

Use distribution loss (KL) for inner and outer optimizations



TRADES

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.

Winning solutions of 
NeurIPS 2018 

Adversarial Vision 
Challenge

Characteristics of TRADES

p 使用KL监督对抗样本的生成，鲁棒性提升显著

p 干净样本也参与训练，有利于模型收敛和干净准确率

p 基于KL的对抗样本生成包含自适应的过程

p 能成训练得到比PGD对抗训练更平滑的决策边界

TRADES既改进了内部最大化又改进了外部最小化



TRADES

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.

Experimental results of TRADES



TRADES vs VAT vs ALP

Zhang et al. "Theoretically principled trade-off between robustness and accuracy." ICML, 2019.
Miyato et al. Distributional smoothing with virtual adversarial training. ICLR 2016.
Kannan, Harini, Alexey Kurakin, and Ian Goodfellow. "Adversarial logit pairing." arXiv preprint arXiv:1803.06373 (2018).

TRADES:

Virtual Adversarial Training:

Adversarial Logits Pairing:

相似的优化框架，不同的损失选择，结果差异很大



MART: Misclassification Aware adveRsarial Training 

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.

Adversarial examples are only defined on correctly 
classified examples, what about misclassified examples ?

Min-max Adversarial Training:

min
𝜽

8
9
∑:;89 max

<!=<!
" 	>	?

ℒ(𝑓@(𝑥: , )	𝑦:) 

where, 𝑥QR is a natural (clean) training sample, 𝑦Q is the label of 𝑥QR.



MART: Misclassification Aware adveRsarial Training 

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.

The influence of misclassified and correctly classified examples:

• A pre-trained network to select the same size (13%)
• Subset of misclassified examples 𝑆2
• Subset of correctly classified examples 𝑆3

Misclassified examples have a significant 
impact on the final robustness!



MART: Misclassification Aware adveRsarial Training 

Wang, et al. “Improving adversarial robustness requires revisiting misclassified examples.” ICLR, 2019.

p For inner maximization process:
• Weak attack on misclassified examples 𝑆2
• Weak attack on correctly classified examples 𝑆3

p For outer minimization process:
• Regularization on misclassified examples 𝑆2
• Regularization on correctly classified examples 𝑆3

different maximization techniques have 
negligible effect

different minimization techniques have 
significant effect



MART: Misclassification Aware adveRsarial Training 

Misclassification aware adversarial risk:

• Adversarial risk:

• Correctly classified and misclassified example:

• Misclassification aware adversarial risk:



MART: Misclassification Aware adveRsarial Training 

• Surrogate loss functions (existing methods and MART):

• Semi-supervised extension of MART: 



MART: Misclassification Aware adveRsarial Training 

Robustness of MART:

• White-box robustness: ResNet-18, CIFAR-10, 𝜖=8/255

• White-box robustness: WideResNet-34-10, CIFAR-10, 𝜖=8/255



Using More Data to Improve Robustness

Alayrac et al. “Are labels required for improving adversarial robustness?.” NeurIPS, 2019.
Carmon et al. “Unlabeled data improves adversarial robustness.” NeurIPS 2019

Select (carefully) 100K/500K images into CIAFR-10

500K (10x)

CIFAR-10

80 Million Tiny Images



UAT & RST

Alayrac et al. “Are labels required for improving adversarial robustness?.” NeurIPS, 2019.
Carmon et al. “Unlabeled data improves adversarial robustness.” NeurIPS 2019

Unsupervised Adversarial Training (UAT):

Robust Self-Training (RST):

S𝑥": new samples 
S𝑦" : pseudo-labels



State-of-the-art: AT Methods

https://robustbench.github.io/

• 数据增广
• 数据生成

数据，数据，还是数据！！



State-of-the-art: AT Methods

Clean accuracy: 94% vs 66% (robustness)

DNN: WideResNet-70-16; Dataset: CIFAR-10
Perturbation: 𝜖 = 8/255;
Evaluation attack: AutoAttack

https://robustbench.github.io/



State-of-the-art: DNN Architecture

http://robust.art/ Tang et al. “RobustART: Benchmarking robustness on architecture design and training techniques.”arXiv:2109.05211, 2021.



State-of-the-art: DNN Architecture

Huang et al. “Exploring architectural ingredients of adversarially robust deep neural networks.” NeurIPS 2021.

WideResNet-34-10 Depth Grid Search

Reduce the deep layers can improve robustness 

d: depth
d5-5-5：depth=5 
at all 3 stages



Certified Defense vs Empirical Defense

• Certified robustness (Sinha et al. 2018; Cohen et al. 2018; Lee et al. 2019)
‒ Gaussian randomized smoothing -> robustness with the ℓ' norm ball
‒ Laplacian randomized smoothing -> ℓ$ robustness
‒ Uniform randomized smoothing -> ℓ4 robustness
‒ Pros: robustness guarantees，严格的鲁棒性下界证明
‒ Cons: 1) deep networks are hard to certify, 2) guarantees are loose, 3) need to 

train the mode in certain ways

ℓ5 ℓ)2D

3D ℓ< Convex hull:
ℓ! +	ℓ"

关键点：如何在神经网
络里传播边界？

Li et al. Sok: Certified robustness for deep neural networks, S&P, 2023



Existing Challenges

p How to attack large language/vision/multi-model models 

p How to defend large language/vision/multi-model models

p How to adapt adv training for different applications

p How to reduce the cost of defense: acceleration, loss of clean acc

p How to combine adv detection with adversarial training

p How to include adv training into the pretraining/finetuning pipeline



谢谢！


